Bio-silica incorporated barium ferrite composites: Evaluation of structure, morphology, magnetic and microwave absorption traits

Doi10.1016/j.cap.2020.02.019TitleBio-silica incorporated barium ferrite composites: Evaluation of structure, morphology, magnetic and microwave absorption traitsFirst AuthorWidanarto, Wahyu; Effendi, Mukhtar; Ghoshal, Sib Krishna;Last AuthorAlaydrus, MudrikAuthorsWidanarto, W; Effendi, M; Ghoshal, SK; Kurniawan, C; Handoko, E; Alaydrus, M;Publish DateMAY 2020Journal CitationCURRENT APPLIED PHYSICSAbstractA series of bio-silica incorporated barium-ferrite-composites with the composition of (x)Bio-SiO2:(80-x)gamma-Fa2O3:(20)BaO, where x = 0, 1, 2, and 3 wf% were prepared using the modified solid-state reaction method. The influence of different bio-silica (extricated from sintered rice husk) contents on the surface morphologies, structures, and magnetic characteristics of these composites were assessed. The relative complex permittivity and permeability were resolved using the Nicholson- Ross-Weir strategy in the frequency range of 8-13 GHz. Meanwhile, the reflection loss was estimated through the transmission/reflection line theory to assess the MW absorption properties of the composites. Incorporation of the bio-silica in the barium ferrite composites generated a new hexagonal phase (Ba3Fe32O51) and a tetragonal phase (BaFeSi4O10) which led to a decrease in the saturation magnetization and significant shift in the MW frequency absorption peak positions.Publish TypeQuezoPublish TypeGasPublish TypeGasPublish TypeGasPage End642Bas1667-1739Eissn1677-1739Eissn1878-1675Urlhttps://www.webofscience.com/w		
Doi10.1016/j.cap.2020.02.019TitleBio-silica incorporated barium ferrite composites: Evaluation of structure, morphology, magnetic and microwave absorption traitsFirst AuthorWidanarto, Wahyu; Effendi, Mukhtar; Ghoshal, Sib Krishna;Last AuthorAlaydrus, MudrikMathorWidanarto, W; Effendi, M; Ghoshal, SK; Kurniawan, C; Handoko, E; Alaydrus, M;Publish DateMAY 2020Journal CurrentCurrent APPLIED PHYSICSAmmeCurrent Applied Dissibilita incorporated barium-ferrite-composites with the composition of (x)Bio-SiO2:(80-x)gamma-Fe2O3:(20)BaO, where x = 0, 1, 2, and 3 wf% were prepared using the modified solid-state reaction method. The influence of different bio-silica (extricated from sintered rice husk) contents on the surface morphologies, structures, and magnetic characteristics of these composites were assessed. The relative complex permittivity and permeability were resolved using the Nicholson- Ross-Weir strategy in the frequency range of 8-13 GHz. Meanwhile, the reflection loss was estimated through the transmission/reflection line theory to assess the MW absorption properties of the composites. Incorporation of the bio-silica in the barium ferrite composites generated a new hexagonal phase (Ba3Fe32O51) and a tetragonal phase (BaFeSi4O10) which led to a decrease in the saturation magnetization and significant shift in the MW frequency absorption peak positions.Publish TypeQuornalPublish TypeGasPublish TypeGasPublish TypeGasPage End642Isan1667-1739Eisan1678-1675Urlhttps://www.webofscience.com/wos/woscc/full-record/WOS:00052153010000	Publons ID	31478853
TitleBio-silica incorporated barium ferrite composites: Evaluation of structure, morphology, magnetic and microwave absorption traitsFirst AuthorWidanarto, Wahyu; Effendi, Mukhtar; Ghoshal, Sib Krishna;Last AuthorsAlaydrus, MudrikAuthorsWidanarto, W; Effendi, M; Ghoshal, SK; Kurniawan, C; Handoko, E; Alaydrus, M;Publish DateMAY 2020Journal NameCURRENT APPLIED PHYSICSCitation6A series of bio-silica incorporated barium-ferrite-composites with the composition of (x)Bio-SiO2:(80-x)gamma-Fe2O3:(20)BaO, where x = 0, 1, 2, and 3 wt% were prepared using the modified solid-state reaction method. The influence of different bio-silica (extricated from sintered rice husk) contents on the surface morphologies, structures, and magnetic characteristics of these composites were assessed. The relative complex permittivity and permeability were resolved using the Nicholson- Ross-Weir strategy in the frequency range of 8-13 GHz. Meanwhile, the reflection loss was estimated through the transmission/reflection line theory to assess the MW absorption properties of the composites. Incorporation of the bio-silica in the barium ferrite composites generated a new hexagonal phase (Ba3Fe32O51) and a tetragonal phase (BaFeSi4O10) which led to a decrease in the saturation magnetization and significant shift in the MW frequency absorption peak positions.Publish TypeJournal concenterPublish TypeGa8Publish TypeGa8Publish TypeIournalPublish TypeIournalPublish TypeIournalPublish TypeIournalPublish TypeIournalPublish Begin <th>Wos ID</th> <th>WOS:000521530100005</th>	Wos ID	WOS:000521530100005
Title microwave absorption traits First Author Widanarto, Wahyu; Effendi, Mukhtar; Ghoshal, Sib Krishna; Last Author Alaydrus, Mudrik Authors Widanarto, W; Effendi, M; Ghoshal, SK; Kurniawan, C; Handoko, E; Alaydrus, M; Publish Date MAY 2020 Journal CURRENT APPLIED PHYSICS Citation 6 A series of bio-silica incorporated barium-ferrite-composites with the composition of (x)Bio-SiO2:(80- x)gamma-Fe2O3:(20)BaO, where x = 0, 1, 2, and 3 wt% were prepared using the modified solid-state reaction method. The influence of different bio-silica (extricated from sintered rice husk) contents on the surface morphologies, structures, and magnetic characteristics of these composites were assessed. The relative complex permittivity and permeability were resolved using the Nicholson- Ross-Weir strategy in the frequency range of 8-13 GHz. Meanwhile, the reflection loss was estimated through the transmission/reflection line theory to assess the MW absorption properties of the composites. Incorporation of the bio-silica in the barium ferrite composites generated a new hexagonal phase (Ba3Fe32O51) and a tetragonal phase (Ba7eSi4O10) which led to a decrease in the saturation magnetization and significant shift in the MW frequency absorption peak positions. Publish Year 2020 Bage 638 Begin 638 Bage 1567-1739 Eissn 1578-1739 Eissn 1578-1	Doi	10.1016/j.cap.2020.02.019
AuthorWidanarto, Wanyu; Effendi, Mukhtar; Ghoshal, Sib Krishna;Last AuthorsAlaydrus, MudrikAuthorsWidanarto, W; Effendi, M; Ghoshal, SK; Kurniawan, C; Handoko, E; Alaydrus, M;Publish DateMAY 2020Journal NameCURRENT APPLIED PHYSICSCitation6A series of bio-silica incorporated barium-ferrite-composites with the composition of (x)Bio-SiO2:(80-x)gamma-Fe2O3:(20)BaO, where x = 0, 1, 2, and 3 wt% were prepared using the modified solid-state reaction method. The influence of different bio-silica (extricated from sintered rice husk) contents on the surface morphologies, structures, and magnetic characteristics of these composites were assessed. The relative complex permittivity and permeability were resolved using the Nicholson- Ross-Weir strategy in the frequency range of 8-13 GHz. Meanwhile, the reflection loss was estimated through the transmission/reflection line theory to assess the MW absorption properties of the composites. Incorporation of the bio-silica in the barium ferrite composites generated a new hexagonal phase (Ba3Fe32O51) and a tetragonal phase (BaFeSi4O10) which led to a decrease in the saturation magnetization and significant shift in the MW frequency absorption peak positions.Publish Year2020Publish Year2020Page End Begin642Issn1567-1739Eissn1878-1675Urlhttps://www.webofscience.com/wos/woscc/full-record/WOS:000521530100005	Title	
Author Alaydrus, Mudrik Authors Widanarto, W; Effendi, M; Ghoshal, SK; Kurniawan, C; Handoko, E; Alaydrus, M; Publish Date MAY 2020 Journal Name CURRENT APPLIED PHYSICS Citation 6 A series of bio-silica incorporated barium-ferrite-composites with the composition of (x)Bio-SiO2:(80-x)gamma-Fe2O3:(20)BaO, where x = 0, 1, 2, and 3 wt% were prepared using the modified solid-state reaction method. The influence of different bio-silica (extricated from sintered rice husk) contents on the surface morphologies, structures, and magnetic characteristics of these composites were assessed. The relative complex permittivity and permeability were resolved using the Nicholson- Ross-Weir strategy in the frequency range of 8-13 GHz. Meanwhile, the reflection loss was estimated through the transmission/reflection line theory to assess the MW absorption properties of the composites. Incorporation of the bio-silica in the barium ferrite composites generated a new hexagonal phase (Ba3Fe32O51) and a tetragonal phase (BaFeSi4O10) which led to a decrease in the saturation magnetization and significant shift in the MW frequency absorption peak positions. Publish Year 2020 Page End 642 Issn 1567-1739 Eissn 1878-1675 Url https://www.webofscience.com/wos/woscc/full-record/WOS:000521530100005	First Author	Widanarto, Wahyu; Effendi, Mukhtar; Ghoshal, Sib Krishna;
Publish DateMAY 2020Journal NameCURRENT APPLIED PHYSICSCitation6A series of bio-silica incorporated barium-ferrite-composites with the composition of (x)Bio-SiO2:(80-x)gamma-Fe2O3:(20)BaO, where x = 0, 1, 2, and 3 wt% were prepared using the modified solid-state reaction method. The influence of different bio-silica (extricated from sintered rice husk) contents on the surface morphologies, structures, and magnetic characteristics of these composites were assessed. The relative complex permittivity and permeability were resolved using the Nicholson- Ross-Weir strategy in the frequency range of 8-13 GHz. Meanwhile, the reflection loss was estimated through the transmission/reflection line theory to assess the MW absorption properties of the composites. Incorporation of the bio-silica in the barium ferrite composites generated a new hexagonal phase (Ba3Fe32O51) and a tetragonal phase (BaFeSi4O10) which led to a decrease in the saturation magnetization and significant shift in the MW frequency absorption peak positions.Publish TypeJournalPublish Type638Page End Eissn1567-1739Eissn1878-1675Urlhttps://www.webofscience.com/wos/woscc/full-record/WOS:000521530100005	Last Author	Alaydrus, Mudrik
DateMAY 2020Journal NameCURRENT APPLIED PHYSICSCitation6Aseries of bio-silica incorporated barium-ferrite-composites with the composition of (x)Bio-SiO2:(80-x)gamma-Fe2O3:(20)BaO, where x = 0, 1, 2, and 3 wt% were prepared using the modified solid-state reaction method. The influence of different bio-silica (extricated from sintered rice husk) contents on the surface morphologies, structures, and magnetic characteristics of these composites were 	Authors	Widanarto, W; Effendi, M; Ghoshal, SK; Kurniawan, C; Handoko, E; Alaydrus, M;
NameCURRENT APPLIED PHYSICSCitation6A series of bio-silica incorporated barium-ferrite-composites with the composition of (x)Bio-SiO2:(80-x)gamma-Fe2O3:(20)BaO, where x = 0, 1, 2, and 3 wt% were prepared using the modified solid-state reaction method. The influence of different bio-silica (extricated from sintered rice husk) contents on the surface morphologies, structures, and magnetic characteristics of these composites were assessed. The relative complex permittivity and permeability were resolved using the Nicholson-Ross-Weir strategy in the frequency range of 8-13 GHz. Meanwhile, the reflection loss was estimated through the transmission/reflection line theory to assess the MW absorption properties of the composites. Incorporation of the bio-silica in the barium ferrite composites generated a new hexagonal phase (Ba3Fe32O51) and a tetragonal phase (BaFeSi4O10) which led to a decrease in the saturation magnetization and significant shift in the MW frequency absorption peak positions.Publish Year2020Page Begin Begin638Page End Eissn1567-1739Eissn1878-1675Urlhttps://www.webofscience.com/wos/woscc/full-record/WOS:000521530100005	Publish Date	MAY 2020
A series of bio-silica incorporated barium-ferrite-composites with the composition of (x)Bio-SiO2:(80-x)gamma-Fe2O3:(20)BaO, where x = 0, 1, 2, and 3 wt% were prepared using the modified solid-state reaction method. The influence of different bio-silica (extricated from sintered rice husk) contents on the surface morphologies, structures, and magnetic characteristics of these composites were assessed. The relative complex permittivity and permeability were resolved using the Nicholson-Ross-Weir strategy in the frequency range of 8-13 GHz. Meanwhile, the reflection loss was estimated through the transmission/reflection line theory to assess the MW absorption properties of the composites. Incorporation of the bio-silica in the barium ferrite composites generated a new hexagonal phase (Ba3Fe32O51) and a tetragonal phase (BaFeSi4O10) which led to a decrease in the saturation magnetization and significant shift in the MW frequency absorption peak positions.Publish TypeJournalPublish Type638Page End642Issn1567-1739Eissn1878-1675Urlhttps://www.webofscience.com/wos/woscc/full-record/WOS:000521530100005	Journal Name	CURRENT APPLIED PHYSICS
Abstractx)gamma-Fe2O3:(20)BaO, where x = 0, 1, 2, and 3 wt% were prepared using the modified solid-state reaction method. The influence of different bio-silica (extricated from sintered rice husk) contents on the surface morphologies, structures, and magnetic characteristics of these composites were assessed. The relative complex permittivity and permeability were resolved using the Nicholson- Ross-Weir strategy in the frequency range of 8-13 GHz. Meanwhile, the reflection loss was estimated through the transmission/reflection line theory to assess the MW absorption properties of the composites. Incorporation of the bio-silica in the barium ferrite composites generated a new 	Citation	6
TypeJournalPublish Year2020Page Begin638Additional642Issn1567-1739Eissn1878-1675Urlhttps://www.webofscience.com/wos/woscc/full-record/WOS:000521530100005	Abstract	x)gamma-Fe2O3:(20)BaO, where x = 0, 1, 2, and 3 wt% were prepared using the modified solid-state reaction method. The influence of different bio-silica (extricated from sintered rice husk) contents on the surface morphologies, structures, and magnetic characteristics of these composites were assessed. The relative complex permittivity and permeability were resolved using the Nicholson-Ross-Weir strategy in the frequency range of 8-13 GHz. Meanwhile, the reflection loss was estimated through the transmission/reflection line theory to assess the MW absorption properties of the composites. Incorporation of the bio-silica in the barium ferrite composites generated a new hexagonal phase (Ba3Fe32O51) and a tetragonal phase (BaFeSi4O10) which led to a decrease in
Year2020Page Begin638Page End642Issn1567-1739Eissn1878-1675Urlhttps://www.webofscience.com/wos/woscc/full-record/WOS:000521530100005	Publish Type	Journal
Begin 638 Page End 642 Issn 1567-1739 Eissn 1878-1675 Url https://www.webofscience.com/wos/woscc/full-record/WOS:000521530100005	Publish Year	2020
Issn 1567-1739 Eissn 1878-1675 Url https://www.webofscience.com/wos/woscc/full-record/WOS:000521530100005	Page Begin	638
Eissn 1878-1675 Url https://www.webofscience.com/wos/woscc/full-record/WOS:000521530100005	Page End	642
Url https://www.webofscience.com/wos/woscc/full-record/WOS:000521530100005	lssn	1567-1739
	Eissn	1878-1675
Author Dr.Eng MUKHTAR EFFENDI, S.Si, M.Eng	Url	https://www.webofscience.com/wos/woscc/full-record/WOS:000521530100005
	Author	Dr.Eng MUKHTAR EFFENDI, S.Si, M.Eng