Enhanced Microwave Absorption Quality of Bio-Silica-Barium-Ferrite Composites: Interplay of Fe3+ and Si4+

Title	Enhanced Microwave Absorption Quality of Bio-Silica-Barium-Ferrite Composites: Interplay of Fe3+ and Si4+
Author Order	3 of 7
Accreditation	1
Abstract	This paper reports the improved microwave (MW) absorption characteristics of some newly prepared bio-silica-barium-ferrite composites (SBFCs) of the form (x)Bio-SiO2:(80-x)Fe2O3:(20) BaO (where x = 0, 2, and 4 wt.%). These composites were prepared using the modified solid-state reaction method with simultaneous sintering at 800 and 1100 \tilde{A} , \hat{A} °C. SBFCs were studied to determine the impact of various bio-silica concentrations on their morphology, structure, magnetic properties, permittivity, permeability, and X-band reflection loss. Various SBFC thicknesses were simulated to determine the reflection loss curves. It has been established that the MW absorption capacity of the examined SBFCs may be altered by adjusting the bio-silica concentration and sample thickness.
Publisher Name Universitas Jenderal Soedirman	
Publish Date	2023-07-10
Publish Year	2023
Doi	DOI: 10.20884/1.jm.2023.18.2.7326
Citation	
Source	Molekul
Source Issue	Vol 18 No 2 (2023)
Source Page	266-272
Url	https://jos.unsoed.ac.id/index.php/jm/article/view/7326/4181
Author	WAHYU TRI CAHYANTO, S.Si, M.Si, Ph.D