MINIMIZING ARTIFICIAL STIFFNESS IN LINEAR TETRAHEDRAL ELEMENT USING VIRTUAL MESH REFINEMENT

Publons ID	36305827
Wos ID	WOS:000434844000005
Doi	10.1017/jmech.2016.113
Title	MINIMIZING ARTIFICIAL STIFFNESS IN LINEAR TETRAHEDRAL ELEMENT USING VIRTUAL MESH REFINEMENT
First Author	Waluyo, S.
Last Author	
Authors	
Publish Date	JUN 2018
Journal Name	JOURNAL OF MECHANICS
Citation	
Abstract	This work presents a new method to minimize artificial stiffness in linear tetrahedral element using virtual mesh refinement (VRM) method. The basic idea behind this work is to give additional degree of freedom by using internal mesh over the linear tetrahedral element. This local internal mesh and its corresponding equilibrium condition under particular boundary condition are invisible to users or virtual. Using specialized displacement test vectors, strain energy is obtained and used to calculate reduction factor for artificial stiffness. Numerical experiments are performed at the end to briefly qualitatively show performance of our proposed method.
Publish Type	Journal
Publish Year	2018
Page Begin	291
Page End	297
Issn	1727-7191
Eissn	1811-8216
Url	https://www.webofscience.com/wos/woscc/full-record/WOS:000434844000005
Author	DrIng SUGENG WALUYO, S.T, M.Sc.