<u>Theoretical studies of the adsorption of hydroxymethylidyne (COH) on Pt-alloy</u> <u>surfaces using density functional theory</u>

Wos IDWOS:000368988800026Doi10.1088/0031-8949/91/2/025803TitleTheoretical studies of the adsorption of hydroxymethylidyne (COH) on Pt-alloy surfaces using density functional theoryFirst AuthorCahyanto, Wahyu Tri; Widanarto, Wahyu; Shukri, Ganes; Kasai, Hideaki;Last AuthorCahyanto, WT; Widanarto, W; Shukri, G; Kasai, H;Publish DateFEB 2016Citation4AtthorsCanyanto, WT; Widanarto, W; Shukri, G; Kasai, H;Publish DatePHYSICA SCRIPTASome Citation4AbstractWe present density functional calculations for the adsorption of hydroxymethylidyne (COH) on Pt, PtRu, and PtRuMo (111) surfaces. Here we clarify the adsorption mechanism by using a charge transfer analysis related to the adsorption of RU on a PtRu surface increases the adsorption energy, while addition of Mo to form a PtRu Surface increases the adsorption energy, while addition of Mo to form a PtRuMo respectively. Addition of Ru to form a PtRu surface increases the adsorption energy, while addition of Mo to form a PtRuMo respectively. Addition of Ru to form a PtRu surface increases the adsorption energy, while addition of Mo to form a PtRuMo respectively. Addition of Ru to form a PtRu surface increases the adsorption energy, while addition of Mo to form a PtRuMo respectively. Addition of Ru to form a PtRu surface surfaces associated with bonding.Publish YearJournal contal surfaces associated with bonding.Publish YearOust set surfaces associated with bonding.Publish YeapOust set surfaces associated with bonding.Publish YeapOust set surfaces associated with bonding. <th< th=""><th>Publons ID</th><th>19524832</th></th<>	Publons ID	19524832
TitleTheoretical studies of the adsorption of hydroxymethylidyne (COH) on Pt-alloy surfaces using density functional theoryFirst AuthorCahyanto, Wahyu Tri; Widanarto, Wahyu; Shukri, Ganes; Kasai, Hideaki;Last AuthorsCahyanto, WT; Widanarto, W; Shukri, G; Kasai, H;Publish DateFEB 2016Publish NamePHYSICA SCRIPTACitation4AbstractWe present density functional calculations for the adsorption of hydroxymethylidyne (COH) on Pt, PHRu, and PIRuMo (111) surfaces. Here we clarify the adsorption mechanism by using a charge transfer analysis related to the adsorption energy. We observe that the preferred binding sites for COH are the hcp hollow Pt-Pt-Pt, hcp hollow Pt-Ru-Pt, and hollow Pt-Ru-Pt adsorption sites for Pt, PtRu, and PIRuMo, respectively. Addition of Ru to form a PtRu surface increases the adsorption energy, while addition of Mo to form a PtRuMo surface decreases it. Our analyses show that the adsorption energy is determined by electron transfer between the molecular COH and the metal surfaces associated with bonding.Publish Year2016Publish Year(not set)Page Begin In (not set)Page End In (not set)Issn0031-8949Eissn1402-4896Urlhttps://www.webofscience.com/wos/woscc/full-record/WOS:000368988800026	Wos ID	WOS:000368988800026
Titledensity functional theoryFirst AuthorCahyanto, Wahyu Tri; Widanarto, Wahyu; Shukri, Ganes; Kasai, Hideaki;Last AuthorsCahyanto, WT; Widanarto, W; Shukri, G; Kasai, H;Publish DateFEB 2016Publish NamePHYSICA SCRIPTACitation4AuthorsWe present density functional calculations for the adsorption of hydroxymethylidyne (COH) on Pt, PtRu, and PtRuMo (111) surfaces. Here we clarify the adsorption mechanism by using a charge transfer analysis related to the adsorption energy. We observe that the preferred binding sites for COH are the hcp hollow Pt-Ru-Pt, hcp hollow Pt-Ru-Pt, adorption sites for Pt, PtRu, and PtRuMo, respectively. Addition of Ru to form a PtRu surface increases the adsorption energy, while addition of Mo to form a PtRuMo surface decreases it. Our analyses show that the adsorption energy is determined by electron transfer between the molecular COH and the metal surfaces associated with bonding.Publish TypeJournal allPublish TypeOu16Page End Inot set)Inot set)Page Edd Issn0031-8949Eissn1402-4896Urlhttps://www.webofscience.com/wos/woscc/full-record/WOS:000368988800026	Doi	10.1088/0031-8949/91/2/025803
AuthorCanyanto, Wanyu Tri; Widanarto, Wanyu; Shukri, Ganes; Kasai, Hideaki;Last AuthorCanyanto, WT; Widanarto, W; Shukri, G; Kasai, H;Publish DateFEB 2016Journal NamePHYSICA SCRIPTACitation4AbstractWe present density functional calculations for the adsorption of hydroxymethylidyne (COH) on Pt, PtRu, and PtRuMo (111) surfaces. Here we clarify the adsorption mechanism by using a charge transfer analysis related to the adsorption energy. We observe that the preferred binding sites for COH are the hcp hollow Pt-Pt-Pt, hcp hollow Pt-Ru-Pt, and hcp hollow Pt-Ru-Pt adsorption energy, while addition of Mo to form a PtRuMo surface decreases it. Our analyses show that the adsorption energy is determined by electron transfer between the molecular COH and the metal surfaces associated with bonding.Publish YearJournal (not set)Page Begin Issn(not set)Page End Issn(not set)Issn031-8949Eissn1402-4896Urlhttps://www.webofscience.com/wos/woscc/full-record/WOS:000368988800026	Title	
AuthorImage: Comparison of Compar	First Author	Cahyanto, Wahyu Tri; Widanarto, Wahyu; Shukri, Ganes; Kasai, Hideaki;
Publish DateFEB 2016Journal NamePHYSICA SCRIPTACitation4AbstractWe present density functional calculations for the adsorption of hydroxymethylidyne (COH) on Pt, PtRu, and PtRuMo (111) surfaces. Here we clarify the adsorption mechanism by using a charge 	Last Author	
DateFEB 2016Journal NamePHYSICA SCRIPTACitation4AbstractWe present density functional calculations for the adsorption of hydroxymethylidyne (COH) on Pt, PtRu, and PtRuMo (111) surfaces. Here we clarify the adsorption mechanism by using a charge transfer analysis related to the adsorption energy. We observe that the preferred binding sites for 	Authors	Cahyanto, WT; Widanarto, W; Shukri, G; Kasai, H;
NamePHYSICA SCRIPTACitation4AbstractWe present density functional calculations for the adsorption of hydroxymethylidyne (COH) on Pt, PtRu, and PtRuMo (111) surfaces. Here we clarify the adsorption mechanism by using a charge transfer analysis related to the adsorption energy. We observe that the preferred binding sites for COH are the hcp hollow Pt-Pt-Pt, hcp hollow Pt-Ru-Pt, and hcp hollow Pt-Ru-Pt adsorption sites for Pt, PtRu, and PtRuMo, respectively. Addition of Ru to form a PtRu surface increases the adsorption energy, while addition of Mo to form a PtRuMo surface decreases it. Our analyses show that the adsorption energy is determined by electron transfer between the molecular COH and the metal surfaces associated with bonding.Publish YearJournalPublish Year(not set)Page End Issn(not set)Issn0031-8949Eissn1402-4896Urlhttps://www.webofscience.com/wos/woscc/full-record/WOS:000368988800026	Publish Date	FEB 2016
AbstractWe present density functional calculations for the adsorption of hydroxymethylidyne (COH) on Pt, PtRu, and PtRuMo (111) surfaces. Here we clarify the adsorption mechanism by using a charge transfer analysis related to the adsorption energy. We observe that the preferred binding sites for COH are the hcp hollow Pt-Pt-Pt, hcp hollow Pt-Ru-Pt, and hcp hollow Pt-Ru-Pt adsorption sites for 	Journal Name	PHYSICA SCRIPTA
AbstractPtRu, and PtRuMo (111) surfaces. Here we clarify the adsorption mechanism by using a charge transfer analysis related to the adsorption energy. We observe that the preferred binding sites for COH are the hcp hollow Pt-Pt-Pt, hcp hollow Pt-Ru-Pt, and hcp hollow Pt-Ru-Pt adsorption sites for Pt, PtRu, and PtRuMo, respectively. Addition of Ru to form a PtRu surface increases the adsorption 	Citation	4
TypeJournalPublish Year2016Page Begin(not set)Page End(not set)Issn0031-8949Eissn1402-4896Urlhttps://www.webofscience.com/wos/woscc/full-record/WOS:000368988800026	Abstract	PtRu, and PtRuMo (111) surfaces. Here we clarify the adsorption mechanism by using a charge transfer analysis related to the adsorption energy. We observe that the preferred binding sites for COH are the hcp hollow Pt-Pt-Pt, hcp hollow Pt-Ru-Pt, and hcp hollow Pt-Ru-Pt adsorption sites for Pt, PtRu, and PtRuMo, respectively. Addition of Ru to form a PtRu surface increases the adsorption energy, while addition of Mo to form a PtRuMo surface decreases it. Our analyses show that the adsorption energy is determined by electron transfer between the molecular COH and the metal
Year2016Page Begin(not set)Page End(not set)Issn0031-8949Eissn1402-4896Urlhttps://www.webofscience.com/wos/woscc/full-record/WOS:000368988800026	Publish Type	Journal
Page End (not set) Issn 0031-8949 Eissn 1402-4896 Url https://www.webofscience.com/wos/woscc/full-record/WOS:000368988800026	Publish Year	2016
Issn 0031-8949 Eissn 1402-4896 Url https://www.webofscience.com/wos/woscc/full-record/WOS:000368988800026	Page Begin	(not set)
Eissn 1402-4896 Url https://www.webofscience.com/wos/woscc/full-record/WOS:000368988800026	Page End	(not set)
Url https://www.webofscience.com/wos/woscc/full-record/WOS:000368988800026	lssn	0031-8949
	Eissn	1402-4896
Author WAHYU TRI CAHYANTO, S.Si, M.Si, Ph.D	Url	https://www.webofscience.com/wos/woscc/full-record/WOS:000368988800026
	Author	WAHYU TRI CAHYANTO, S.Si, M.Si, Ph.D