Facile Synthesis of Ag3PO4 Photocatalyst with Varied Ammonia Concentration and Its Photocatalytic Activities For Dye Removal

Publons ID 20388117 Wos ID WOS:000456797100006 Doi 10.9767/bcrec.14.1.2549.42-50 Title Facile Synthesis of Ag3PO4 Photocatalyst with Varied Ammonia Concentration and Its Photocataly Activities For Dye Removal First Author Febiyanto, Febiyanto; Soleh, Agus; Amal, Muhammad Sofi Khoerul; Last Author Sulaeman, Uyi Author Febiyanto, F; Soleh, A; Amal, MSK; Afif, M; Sewiji, S; Riapanitra, A; Sulaeman, U; Publish Date Journal Name BULLETIN OF CHEMICAL REACTION ENGINEERING AND CATALYSIS Citation 1 The highly active photocatalyst of Ag3PO4 could be synthesized under ammonia solution using the facile co-precipitation method with the starting material of AgNO3 and Na2HPO4.12H(2)O. The
Doi 10.9767/bcrec.14.1.2549.42-50 Title Facile Synthesis of Ag3PO4 Photocatalyst with Varied Ammonia Concentration and Its Photocataly Activities For Dye Removal First Author Febiyanto, Febiyanto; Soleh, Agus; Amal, Muhammad Sofi Khoerul; Last Author Sulaeman, Uyi Authors Febiyanto, F; Soleh, A; Amal, MSK; Afif, M; Sewiji, S; Riapanitra, A; Sulaeman, U; Publish Date Journal Name BULLETIN OF CHEMICAL REACTION ENGINEERING AND CATALYSIS Citation 1 The highly active photocatalyst of Ag3PO4 could be synthesized under ammonia solution using the facile co-precipitation method with the starting material of AgNO3 and Na2HPO4.12H(2)O. The
Title Facile Synthesis of Ag3PO4 Photocatalyst with Varied Ammonia Concentration and Its Photocataly Activities For Dye Removal First Author Last Author Authors Febiyanto, Febiyanto; Soleh, Agus; Amal, Muhammad Sofi Khoerul; Sulaeman, Uyi Authors Febiyanto, F; Soleh, A; Amal, MSK; Afif, M; Sewiji, S; Riapanitra, A; Sulaeman, U; Publish Date Journal Name BULLETIN OF CHEMICAL REACTION ENGINEERING AND CATALYSIS Citation 1 The highly active photocatalyst of Ag3PO4 could be synthesized under ammonia solution using the facile co-precipitation method with the starting material of AgNO3 and Na2HPO4.12H(2)O. The
First Author Last Author Authors Febiyanto, Febiyanto; Soleh, Agus; Amal, Muhammad Sofi Khoerul; Sulaeman, Uyi Authors Febiyanto, F; Soleh, A; Amal, MSK; Afif, M; Sewiji, S; Riapanitra, A; Sulaeman, U; Publish Date Journal Name BULLETIN OF CHEMICAL REACTION ENGINEERING AND CATALYSIS Citation 1 The highly active photocatalyst of Ag3PO4 could be synthesized under ammonia solution using the facile co-precipitation method with the starting material of AgNO3 and Na2HPO4.12H(2)O. The
Author Last Author Authors Febiyanto, Febiyanto; Soleh, Agus; Amal, Muhammad Sofi Khoerul; Sulaeman, Uyi Authors Febiyanto, F; Soleh, A; Amal, MSK; Afif, M; Sewiji, S; Riapanitra, A; Sulaeman, U; Publish Date Journal Name BULLETIN OF CHEMICAL REACTION ENGINEERING AND CATALYSIS Citation The highly active photocatalyst of Ag3PO4 could be synthesized under ammonia solution using the facile co-precipitation method with the starting material of AgNO3 and Na2HPO4.12H(2)O. The
Authors Febiyanto, F; Soleh, A; Amal, MSK; Afif, M; Sewiji, S; Riapanitra, A; Sulaeman, U; Publish Date Journal Name BULLETIN OF CHEMICAL REACTION ENGINEERING AND CATALYSIS Citation The highly active photocatalyst of Ag3PO4 could be synthesized under ammonia solution using the facile co-precipitation method with the starting material of AgNO3 and Na2HPO4.12H(2)O. The
Publish Date Journal Name BULLETIN OF CHEMICAL REACTION ENGINEERING AND CATALYSIS Citation 1 The highly active photocatalyst of Ag3PO4 could be synthesized under ammonia solution using the facile co-precipitation method with the starting material of AgNO3 and Na2HPO4.12H(2)O. The
Journal Name BULLETIN OF CHEMICAL REACTION ENGINEERING AND CATALYSIS Citation 1 The highly active photocatalyst of Ag3PO4 could be synthesized under ammonia solution using the facile co-precipitation method with the starting material of AgNO3 and Na2HPO4.12H(2)O. The
Name Citation The highly active photocatalyst of Ag3PO4 could be synthesized under ammonia solution using the facile co-precipitation method with the starting material of AgNO3 and Na2HPO4.12H(2)O. The
The highly active photocatalyst of Ag3PO4 could be synthesized under ammonia solution using the facile co-precipitation method with the starting material of AgNO3 and Na2HPO4.12H(2)O. The
facile co-precipitation method with the starting material of AgNO3 and Na2HPO4.12H(2)O. The
variation of ammonia concentration was designed at 0.00, 0.05, 0.15, and 0.30 M. The products we characterized using X-ray diffraction, UV-diffuse reflectance spectroscopy, and scanning electron microscopy. The photocatalytic activities were evaluated using the Rhodamine B degradation under blue light irradiation. The effect of calcination, pH condition, and visible light source irradiation was carried out in the experiment. The highest photocatalytic activity was found in the sample prepared using the addition of ammonia solution at the concentration of 0.05 M. This photocatalytic activity was activity was achieved at the sample prepared without the ammonia. The effective condition photocatalytic activity was achieved at the sample prepared without calcination, degradation at pH 7 and under blue light irradiation. Copyright (c) 2019 BCREC Group. All rights reserved
Publish Type Journal
Publish Year 2019
Page Begin 42
Page End 50
Issn 1978-2993
Eissn
Url https://www.webofscience.com/wos/woscc/full-record/WOS:000456797100006