The character istics (compositions, morphological, and structure) of nanocomposites polyaniline (PANI)/ZnO

Publons ID 31994672 Wos ID WOS:000471058400126 Doi 10.1088/1757-899X/509/1/012126 Title The character istics (compositions, morphological, and structure) of nanocomposites polyaniling (PANI)/ZnO First Andreas, Roy; Lesbani, Aides; Yusuf, Faqihudin Akhmad; Last Author Authors Andreas, R; Lesbani, A; Yusuf, FA; Publish 2019 Journal 13TH JOINT CONFERENCE ON CHEMISTRY (13TH JCC) Citation 2 In recent years, development of inorganic-organic hybrid materials has been receiving significa attention due to wide range of potential applications and high absorption in visible spectrum. Polyaniline (PANI) and nanocomposite PANI/ZnO were prepared by interfacial polymerization method of two-phase organic/water. The characteristics (composition, morphology and structu the nanocomposites characterized by Fourier transform infrared spectroscopy (FTIR), scannin electron microscopy-Energy dispersive X-ray (SEM-EDX) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The characterization by DRS showed the compound PANI, PAN 5% and 10% have an energy value of similar to 2.0 eV band gap. SEM analysis with image-J software showed a decreasing of the particle size due to the increasing content of ZnO. Publish Yype Book in series Publish Year 2019	
Doi10.1088/1757-899X/509/1/012126TitleThe character istics (compositions, morphological, and structure) of nanocomposites polyaniline (PANI)/ZnOFirst AuthorAndreas, Roy; Lesbani, Aides; Yusuf, Faqihudin Akhmad;Last AuthorsAndreas, R; Lesbani, A; Yusuf, FA;Publish Date2019Journal Name13TH JOINT CONFERENCE ON CHEMISTRY (13TH JCC)Citation2In recent years, development of inorganic-organic hybrid materials has been receiving significa attention due to wide range of potential applications and high absorption in visible spectrum. Polyaniline (PANI) and nanocomposite PANI/ZnO were prepared by interfacial polymerization method of two-phase organic/water. The characteristics (composition, morphology and structu the nanocomposite scharacterized by Fourier transform infrared spectroscopy (FTIR), scannin electron microscopy-Energy dispersive X-ray (SEM-EDX) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The characterization by DRS showed the presence of electr transitions in PANI compound. The characterization by DRS showed the presence of electr transitions in PANI compound. The characterization by DRS showed the compound PANI, PAN 5% and 10% have an energy value of similar to 2.0 eV band gap. SEM analysis with image-J software showed a decreasing of the particle size due to the increasing content of ZnO.Publish YearBook in series	
TitleThe character istics (compositions, morphological, and structure) of nanocomposites polyanilline (PANI)/ZnOFirst AuthorAndreas, Roy; Lesbani, Aides; Yusuf, Faqihudin Akhmad;Last AuthorAndreas, Roy; Lesbani, Aides; Yusuf, Faqihudin Akhmad;AuthorsAndreas, R; Lesbani, A; Yusuf, FA;Publish Date2019Journal Name13TH JOINT CONFERENCE ON CHEMISTRY (13TH JCC)Citation2In recent years, development of inorganic-organic hybrid materials has been receiving significa attention due to wide range of potential applications and high absorption in visible spectrum. Polyaniline (PANI) and nanocomposite PANI/ZnO were prepared by interfacial polymerization method of two-phase organic/water. The characteristics (composition, morphology and structu the nanocomposites characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy-Energy dispersive X-ray (SEM-EDX) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The characteristic FT-IR peaks of PANI and nanocomposite (PANI)/ZnO due to formation H-Bonding. UV-Vis characterization showed the presence of electri transitions in PANI compound. The characterization by DRS showed the compound PANI, PAN 5% and 10% have an energy value of similar to 2.0 eV band gap. SEM analysis with image-J software showed a decreasing of the particle size due to the increasing content of ZnO.Publish Year2019	
Title(PANI)/ZnOFirst AuthorAndreas, Roy; Lesbani, Aides; Yusuf, Faqihudin Akhmad;Last AuthorAndreas, R; Lesbani, A; Yusuf, FA;Publish Date2019Journal Name13TH JOINT CONFERENCE ON CHEMISTRY (13TH JCC)Citation2In recent years, development of inorganic-organic hybrid materials has been receiving significa attention due to wide range of potential applications and high absorption in visible spectrum. Polyaniline (PANI) and nanocomposite PANI/ZnO were prepared by interfacial polymerization method of two-phase organic/water. The characteristics (composition, morphology and structu the nanocomposites characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy-Energy dispersive X-ray (SEM-EDX) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The characterization by DRS showed the presence of electri transitions in PANI compound. The characterization by DRS showed the compound PANI, PAN 5% and 10% have an energy value of similar to 2.0 eV band gap. SEM analysis with image-J software showed a decreasing of the particle size due to the increasing content of ZnO.Publish Year2019	
Author Andreas, Roy; Lesbani, Aides; Yusur, Faqinudin Akhmad; Last Author Authors Andreas, R; Lesbani, A; Yusuf, FA; Publish 2019 Journal 13TH JOINT CONFERENCE ON CHEMISTRY (13TH JCC) Citation 2 In recent years, development of inorganic-organic hybrid materials has been receiving significa attention due to wide range of potential applications and high absorption in visible spectrum. Polyaniline (PANI) and nanocomposite PANI/ZnO were prepared by interfacial polymerization method of two-phase organic/water. The characteristics (composition, morphology and structu the nanocomposites characterized by Fourier transform infrared spectroscopy (FTIR), scannin electron microscopy-Energy dispersive X-ray (SEM-EDX) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The characterization by DRS showed the presence of electr transitions in PANI compound. The characterization by DRS showed the compound PANI, PAN 5% and 10% have an energy value of similar to 2.0 eV band gap. SEM analysis with image-J software showed a decreasing of the particle size due to the increasing content of ZnO. Publish Book in series Publish 2019	е
AuthorAuthorsAndreas, R; Lesbani, A; Yusuf, FA;Publish Date2019Journal Name13TH JOINT CONFERENCE ON CHEMISTRY (13TH JCC)Citation2Citation2In recent years, development of inorganic-organic hybrid materials has been receiving significa attention due to wide range of potential applications and high absorption in visible spectrum. Polyaniline (PANI) and nanocomposite PANI/ZnO were prepared by interfacial polymerization method of two-phase organic/water. The characteristics (composition, morphology and structu the nanocomposites characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy-Energy dispersive X-ray (SEM-EDX) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The characteristic FT-IR peaks of PANI and nanocomposite (PANI)/ZnO due to formation H-Bonding. UV-Vis characterization showed the presence of electri transitions in PANI compound. The characterization by DRS showed the compound PANI, PAN 5% and 10% have an energy value of similar to 2.0 eV band gap. SEM analysis with image-J software showed a decreasing of the particle size due to the increasing content of ZnO.Publish Year2019	
Publish Date2019Journal Name13TH JOINT CONFERENCE ON CHEMISTRY (13TH JCC)Citation2Citation2In recent years, development of inorganic-organic hybrid materials has been receiving significa attention due to wide range of potential applications and high absorption in visible spectrum. Polyaniline (PANI) and nanocomposite PANI/ZnO were prepared by interfacial polymerization method of two-phase organic/water. The characteristics (composition, morphology and structu the nanocomposites characterized by Fourier transform infrared spectroscopy (FTIR), scannin electron microscopy-Energy dispersive X-ray (SEM-EDX) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The characterization showed the presence of electri transitions in PANI compound. The characterization by DRS showed the compound PANI, PAN 5% and 10% have an energy value of similar to 2.0 eV band gap. SEM analysis with image-J software showed a decreasing of the particle size due to the increasing content of ZnO.Publish TypeBook in seriesPublish Year2019	
Date2019Journal Name13TH JOINT CONFERENCE ON CHEMISTRY (13TH JCC)Citation2Citation2In recent years, development of inorganic-organic hybrid materials has been receiving significa attention due to wide range of potential applications and high absorption in visible spectrum. Polyaniline (PANI) and nanocomposite PANI/ZnO were prepared by interfacial polymerization method of two-phase organic/water. The characteristics (composition, morphology and structu the nanocomposites characterized by Fourier transform infrared spectroscopy (FTIR), scannin- electron microscopy-Energy dispersive X-ray (SEM-EDX) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The characteristic FT-IR peaks of PANI and nanocomposite (PANI)/ZnO due to formation H-Bonding. UV-Vis characterization showed the presence of electr transitions in PANI compound. The characterization by DRS showed the compound PANI, PAN 5% and 10% have an energy value of similar to 2.0 eV band gap. SEM analysis with image-J software showed a decreasing of the particle size due to the increasing content of ZnO.Publish TypeBook in seriesPublish Year2019	
Name13TH JOINT CONFERENCE ON CHEMISTRY (13TH JCC)Citation2Citation2In recent years, development of inorganic-organic hybrid materials has been receiving significa attention due to wide range of potential applications and high absorption in visible spectrum. Polyaniline (PANI) and nanocomposite PANI/ZnO were prepared by interfacial polymerization method of two-phase organic/water. The characteristics (composition, morphology and structu the nanocomposites characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy-Energy dispersive X-ray (SEM-EDX) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The characterization by DRS showed the presence of electri transitions in PANI compound. The characterization by DRS showed the compound PANI, PAN 5% and 10% have an energy value of similar to 2.0 eV band gap. SEM analysis with image-J software showed a decreasing of the particle size due to the increasing content of ZnO.Publish TypeBook in seriesPublish Year2019	
In recent years, development of inorganic-organic hybrid materials has been receiving significa attention due to wide range of potential applications and high absorption in visible spectrum. Polyaniline (PANI) and nanocomposite PANI/ZnO were prepared by interfacial polymerization method of two-phase organic/water. The characteristics (composition, morphology and structu the nanocomposites characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy-Energy dispersive X-ray (SEM-EDX) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The characteristic FT-IR peaks of PANI and nanocomposite (PANI)/ZnO due to formation H-Bonding. UV-Vis characterization showed the presence of electric transitions in PANI compound. The characterization by DRS showed the compound PANI, PAN 5% and 10% have an energy value of similar to 2.0 eV band gap. SEM analysis with image-J software showed a decreasing of the particle size due to the increasing content of ZnO.Publish Type2019	
Abstractattention due to wide range of potential applications and high absorption in visible spectrum. Polyaniline (PANI) and nanocomposite PANI/ZnO were prepared by interfacial polymerization method of two-phase organic/water. The characteristics (composition, morphology and structu the nanocomposites characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy-Energy dispersive X-ray (SEM-EDX) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The characteristic FT-IR peaks of PANI and nanocomposite (PANI)/ZnO due to formation H-Bonding. UV-Vis characterization showed the presence of electri transitions in PANI compound. The characterization by DRS showed the compound PANI, PAN 5% and 10% have an energy value of similar to 2.0 eV band gap. SEM analysis with image-J software showed a decreasing of the particle size due to the increasing content of ZnO.Publish Year2019	
Type Book in series Publish Year 2019	re) of g ron
Year	
Page Begin (not set)	
Page End (not set)	
Issn 1757-8981	
Eissn	
Url https://www.webofscience.com/wos/woscc/full-record/WOS:000471058400126	
Author ROY ANDREAS, S.Si, M.Si, Ph.D	